
 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

49

Monitoring and Prevention of Stealthy Denial of Service Strategy in Cloud

Computing

Abstract—The success of the cloud computing paradigm is due to its on-demand, self-service, and pay-

by-use nature. According to this paradigm, the effects of Denial of Service (DoS) attacks involve not

only the quality of the delivered service, but also the service maintenance costs in terms of resource

consumption. Specifically, the longer the detection delay is, the higher the costs to be incurred.

Therefore, a particular attention has to be paid for stealthy DoS attacks. They aim at minimizing their

visibility, and at the same time, they can be as harmful as the brute-force attacks. They are sophisticated

attacks tailored to leverage the worst-case performance of the target system through specific periodic,

pulsing, and low-rate traffic patterns. In this paper, we propose a strategy to orchestrate stealthy attack

patterns, which exhibit a slowly-increasing-intensity trend designed to inflict the maximum financial cost

to the cloud customer, while respecting the job size and the service arrival rate imposed by the detection

mechanisms. We describe both how to apply the proposed strategy, and its effects on the target system

deployed in the cloud.

Index Terms—Cloud computing, sophisticated attacks strategy,low-rate attacks, intrusion detection

I-INTRODUCTION

Cloud Computing is an emerging paradigm that allows

customers obtain cloud resources and services according to

an on-demand, self-service, and pay-by-use business model.

Service level agreements (SLA) regulate the costs that the

cloud customers have to pay for the provided quality of service

(QoS). A side effect of such a model is that, it is prone to

Denial of Service (DoS) and Distributed DoS (DDoS), which

aim at reducing the service availability and performance by

exhausting the resources of the serv-ice‘s host system

(including memory, processing resources, and network

bandwidth). Such attacks have special effects in the cloud due

to the adopted pay-by-use business model. Specifically, in

cloud computing also a partial ser-vice degradation due to an

attack has direct effect on the service costs, and not only on the

performance and avail-ability perceived by the customer. The

delay of the cloud service provider to diagnose the causes of the

service degra-dation (i.e., if it is due to either an attack or an

overload) can be considered as a security vulnerability. It can

be exploited by attackers that aim at exhausting the cloud

resources (allocated to satisfy the negotiated QoS), and

seriously degrading the QoS, as happened to the BitBucket

Cloud, which went down for 19h. Therefore, the cloud manage-

ment system has to implement specific countermeasures in

order to avoid paying credits in case of accidental or deliberate

intrusion that cause violations of QoS guarantees. Over the past

decade, many efforts have been devoted to the detection of

DDoS attacks in distributed systems. Secu-rity prevention

mechanisms usually use approaches based On rate-controlling,

time-window, worst-case threshold, and pattern-matching

methods to discriminate between the nominal system operation

and malicious behaviors . On the other hand, the attackers are

aware of the presence of such protection mechanisms.

They attempt to perform their activities in a ―stealthy‖

fashion in order to elude the secu-rity mechanisms, by

orchestrating and timing attack pat-terns that leverage specific

weaknesses of target systems . They are carried out by directing

flows of legitimate service requests against a specific system at

such a low-rate that would evade the DDoS detection

mechanisms, and prolong the attack latency, i.e., the amount of

time that the ongoing attack to the system has been undetected.

Ms.S.Priyanka

Department of Computer Science and Engineering

SSM College of Engineering, Komarapalayam,

Tamil Nadu, India

Priyankacse1701@gmail.com

Ms.S.Vimalananthi

Department of Computer Science and Engineering

SSM College of Engineering, Komarapalayam

Tamil Nadu, India

vimalananthis@yahoo.com

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

50

This paper presents a sophisticated strategy to orches-trate

stealthy attack patterns against applications running in the

cloud.

Instead of aiming at making the service unavail-able, the

proposed strategy aims at exploiting the cloud flex-ibility,

forcing the application to consume more resources than needed,

affecting the cloud customer more on financial aspects than on

the service availability. The attack pattern is orchestrated in

order to evade, or however, greatly delay the techniques

proposed in the literature to detect low-rate attacks. It does not

exhibit a periodic waveform typical of low-rate exhausting

attacks. In contrast with them, it is an iterative and incremental

process. In particu-lar, the attack potency (in terms of service

requests rate and concurrent attack sources) is slowly enhanced

by a patient attacker, in order to inflict significant financial

losses, even if the attack pattern is performed in accordance to

the maxi-mum job size and arrival rate of the service requests

allowed in the system. Using a simplified model empirically

designed, we derive an expression for gradually increasing the

potency of the attack, as a function of the reached service

degradation (without knowing in advance the target system

capability). We show that the features offered by the cloud

provider, to ensure the SLA negotiated with the customer

(including the load balancing and auto-scaling mecha-nisms),

can be maliciously exploited by the proposed stealthy

attack, which slowly exhausts the resources pro-vided by the

cloud provider, and increases the costs incurred by the

customer.

The proposed attack strategy, namely Slowly-Increasing-

Polymorphic DDoS Attack Strategy (SIPDAS) can be applied

to several kind of attacks, that leverage known application

vulnerabilities, in order to degrade the service provided by the

target application server running in the cloud. The term

polymorphic is inspired to polymorphic attacks which change

message sequence at every successive infection in order to

evade signature detection mechanisms. Even if the victim

detects the SIPDAS attack, the attack strategy can be re-initiate

by using a different application vulnerability (polymorphism in

the form), or a different timing (polymor-phism over time).

In order to validate the stealthy characteristics of the

proposed SIPDAS attack, we explore potential solutions

proposed in the literature to detect sophisticated low-rate DDoS

attacks. We show that the proposed slowly-increas-ing

polymorphic behavior induces enough overload on the target

system (to cause a significant financial losses), and evades, or

however, delays greatly the detection methods. Moreover, in

order to explore the attack impact against an application

deployed in a cloud environment, this paper focuses on one of

the most serious threats to cloud computing, which comes from

XML-based DoS (X-DoS) attacks to the web-based systems .

The experi-mental testbed is based on the mOSAIC framework,

which offers both a ‗Software Platform‘, that enables the

execution of applications developed using the mOSAIC API,

and a ‗Cloud Agency‘, that acts as a provisioning system,

brokering resources from a federation of cloud providers.
The rest of this paper is organized as follows. Back-ground

and related work are presented. Illustrates several examples of

attacks, which can be leveraged to implement the proposed

attack pattern. Describes the proposed strategy to build the

stealthy attacks, and presents the attack pattern, whose detailed

implementation is reported. Introduces the X-DoS attack used

as case study. It shows the experimental results obtained

running the attack pattern. Validation of stealthy characteristics

is provided. Some considerations about coun-termeasures

against the proposed strategy are illustrated. Conclusions and

future work are described .

II-RELATED WORKS

INTRUSION DETECTION IN THE CLOUD

Intrusion Detection Systems (IDS) have been used

widely to detect malicious behaviors in network

communication and hosts. IDS management is an important

capability for distributed IDS solutions, which makes it

possible to integrate and handle different types of sensors or

collect and synthesize alerts generated from multiple hosts

located in the distributed environment. Facing new application

scenarios in Cloud Computing, the IDS approaches yield

several problems since the operator of the IDS should be the

user, not the administrator of the Cloud infrastructure.

Extensibility, efficient management, and compatibility to

virtualization based context need to be introduced into many

existing IDS implementations. Additionally, the Cloud

providers need to enable possibilities to deploy and configure

IDS for the user.

They summarize several requirements for deploying

IDS in the Cloud and propose an extensible IDS architecture

for being easily used in a distributed cloud infrastructure.

Along with the proposal of the concept Cloud

Computing, a new paradigm of software development and

deployment has emerged. Cloud Computing can be interpreted

as the sum of Software as a Service (SaaS) and Utility

Computing. There are Cloud providers, which offer a specific

virtualized infrastructure, and Cloud users, which use the

provided services and infrastructure. Furthermore, there are

three layers involved in Cloud Computing: the system layer, the

platform layer, and the application layer. The hardware layer is

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

51

the basis for Cloud computing and is not provided directly to

the user.

CLOUD SECURITY DEFENCE TO PROTECTING

CLOUD COMPUTING AGAINST HTTP-DOS AND

XML-DOS ATTACKS

Today it is an inescapably fact that the internet and

cloud computing are the future revenue generators for

businesses and corporations, hence why organization like

IBM are heavily investing in providing better service oriented

products to facilitate the demands. One of the most serious

threats to these future revenues and to cloud computing itself

comes from HTTP Denial-of-Service or XML Based Denial of

Service attack. These types of attacks are simple and easy to

implement by the attacker but to security experts they are twice

as difficult to stop. They recreate some of the current attacks

that attackers may initiate as HTTP and XML and offer a

possible solution to trace back through their Cloud Trace Back

(CTB) to find the source of these attacks as well as to introduce

the use of a back propagation neutral network, called Cloud

Protector, that was trained to detect and filter such attack

traffic. Their results show that they were able to detect and

filter around an average of 100% of the attack messages and

were able to identify the source of the attack within 10 seconds.

Today, cloud computing systems are providing a wide

variety of services and interfaces to which vendors are now

renting out spaces on their physical machines at an hourly rate

for a tidy profit (Amazon EC2, 2009; INetu, 2009 & Elastic

Hosts, 2009). The services that are provided by these vendors

can vary from dynamically virtual machines (Enomaly.com,

2009; Keahey et. al., 2005; Nurmi et. al. 2009 and McNettet. al.

2007) to flexible hosted software services (Laplante et. al.

2008; Hewlett-Packard, 2009; Hibler et. al. 2008 and Lenk et.

al, 2009) and each shares the notion that delivered resources are

to be allocated and de-allocated on demand, while at the same

time provide reasonable performance.

DETECTING APPLICATION DENIAL-OF-SERVICE

ATTACKS: A GROUP TESTING BASED APPROACH

Application DoS attack, which aims at disrupting

application service rather than depleting the network resource,

has emerged as a larger threat to network services, compared to

the classic DoS attack. Owing to its high similarity to legitimate

traffic and much lower launching overhead than classic DDoS

attack, this new assault type cannot be efficiently detected or

prevented by existing detection solutions. To identify

application DoS attack. They propose a novel group testing

(GT) based approach deployed on back-end servers, which not

only offers a theoretical method to obtain short detection delay

and low false positive/negative rate, but also provides an

underlying framework against general network attacks.

More specifically, they first extend classic GT model

with size constraints for practice purposes, then re-distribute the

client service requests to multiple virtual servers embedded

within each backend server machine, according to specific

testing matrices. Base on this framework, they propose a 2-

mode detection mechanism using some dynamic thresholds to

efficiently identify the attackers. The focus of this work lies in

the detection algorithms proposed and the corresponding

theoretical complexity analysis. They also provide preliminary

simulation results regarding the efficiency and practicability of

this new scheme. Further discussions over implementation

issues and performance enhancements are also appended to

show its great potentials.

Denial-of-Service (DoS) attack, which aims to make a

service unavailable to legitimate clients, has become a severe

threat to the Internet security . Traditional DoS attacks mainly

abuse the network bandwidth around the Internet subsystems

and degrade the quality of service by generating congestions at

the network . Consequently, several network based defense

methods have tried to detect these attacks by controlling traffic

volume or differentiating traffic patterns at the intermediate

routers. However, with the boost in network bandwidth and

application service types recently, the target of DoS attacks

have shifted from network to server resources and application

procedures themselves, forming a new application DoS attack.

INTRUSION TOLERANCE OF STEALTH DOS

ATTACKS TO WEB SERVICES

Focuses on one of the most harmful categories of

Denial of Service attacks, commonly known in the literature as

―stealth‖ attacks. They are performed avoiding to send

significant volumes of data, by injecting into the network a

low-rate flow of packets in order to evade rate-controlling

detection mechanisms. This work presents an intrusion

tolerance solution, which aims at providing minimal level of

services, even when the system has been partially compromised

by such attacks. It describes all protection phases, from

monitoring to diagnosis and recovery. Preliminary experimental

results show that the proposed approach results in a better

performance of Intrusion Prevention Systems, in terms of

reducing service unavailability during stealth attacks.

Denial of Service (DoS) attacks are serious threats to the

Internet causing billions of dollars in economic loss. In

particular, brute force and flooding attacks against application-

layer services, like the Web Services (WSs), pose a huge risk to

several business-critical services.

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

52

The recent tide of DoS attacks against high-profile

WSs, including PayPal, MasterCard and Amazon, demonstrate

how devastating DoS attacks are. In general, attackers are

aware of the presence of protection mechanisms: they thus

attempt to perform their activities in a stealthy fashion in order

to elude local security mechanisms. From an attacker point of

view, one of the most effective way of circumventing these

security countermeasures consists in distributing the attacks

both in ‗form‘ and/or ‗time‘ executing.

INTRUSION TOLERANT APPROACH FOR DENIAL OF

SERVICE ATTACKS TO WEB SERVICES

Intrusion Detection Systems are the major technology

used for protecting information systems. However, they do not

directly detect intrusion, but they only monitor the attack

symptoms. Therefore, no assumption can be made on the

outcome of the attack, no assurance can be assumed once the

system is compromised. The intrusion tolerance techniques

focus on providing minimal level of services, even when the

system has been partially compromised. This paper presents an

intrusion tolerant approach for Denial of Service attacks to Web

Services.

 It focuses on the detection of attack symptoms as

well as the diagnosis of intrusion effects in order to perform a

proper reaction only if the attack succeeds. In particular, this

work focuses on a specific Denial of Service attack, called

Deeply-Nested XML. Preliminary experimental results show

that the proposed approach results in a better performance of

the Intrusion Detection Systems, in terms of increasing

diagnosis capacity as well as reducing the service unavailability

during an intrusion.

Intrusion tolerance is an emerging paradigm for

developing systems that are able to provide an acceptable level

of service even after that intruders have broken in. In the

context of an Intrusion Tolerant System (ITS), intrusion

detection is the key activity to perform intrusion recovery. It is

characterized by two sub-activities: monitoring and diagnosis.

Monitoring recognizes that something unexpected has occurred

in the system.

III-EXISTING SYSTEM METHODOLOGY

In order to implement DoS-based attacks, the

following components are involved:

 A Master that coordinates the attack;

 πAgents that perform the attack (each Agent

injects a single flow of messages Aj); and

 A Meter that evaluates the attack effects.

The existing system consists of the approach where

each Agent performs a stealthy service degradation in the cloud

computing. It has been specialized for an X-DoS attack.

Specifically, the attack is performed by injecting polymorphic

bursts of length T with an increasing intensity until the attack is

either successful or detected. Each burst is formatted in such a

way as to inflict a certain average level of load CR.

That is a web service is called continuously or a file/image is

accessed continuously by the same client.

In particular, it is assumed that CR is proportional to

the attack intensity of the flow Aj during the period T.

Therefore, denote I0 as the initial intensity of the attack, and

assuming ΔCR = ΔI as the increment of the attack intensity.

For each attack period, fixed the maximum number of

nested tags (tagThreshold), the routine pickRandomTags(...)

randomly returns the number of nested tags nT for each

message (row 4). Based on nT, the routine

computeInterarrivalTime uses a specific algorithm Eq. (1) to

compute the inter-arrival time for injecting the next message.

At the end of the period T, if the condition

‗attackSuccessful‘ is false, the attack intensity is increased . If

the condition ‗attackSuccessful‘is true, the attack intensity is

maintained constant until either the attack is detected (e.g., the

target system is no longer reachable due to a reaction performed

by the security administrator or by an Intrusion Prevention

System), or the auto-scaling mechanism enabled in the cloud

adds new cloud resources. The attack is performed until it is

either detected, or the average message rate of the next burst to

be injected is greater than δT.

 Only attack scenarios are considered.

 Not aimed at extending the approach to a larger set of

application level vulnerabilities.

 Prevention of those attack mechanisms is not studied.

 Security level of existing system is very low,

maintained data may get lost or theft by the

unauthorized users.

 The frequently requested web pages, images, and

most requested clients are not trace out quickly.

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

53

IV-PROPOSED SYSTEM METHODOLOGY

In addition to the existing system implementation, the

proposed system also provides an environment where attack

scenario is found out and prevented.The resources such as web

pages/ images and web services are added in a database with

access count and time limit. For example, a particular resource

can be accessed hundred times within a hour by one particular

client IP address. If the client accesses the resource more than

the given count, the request is redirected to a ‗accessdenied‘

page.

 Both attack scenarios and prevention approach are

considered.

 Aimed at extending the approach to a larger set of

application level vulnerabilities.

 Prevention of those attack mechanisms is studied.

 Security level of existing system is very high,

maintained data is not lost or theft by the unauthorized

users.

 The frequently requested web pages, images, and

most requested clients are traced out quickly.

 At the same time, privileged clients can access the

resources from their web site coding also.

V-IMPLEMENTATION

 Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus it

can be considered to be the most critical stage in achieving a

successful new system and in giving the user, confidence that

the new system will work and be effective.

 The implementation stage involves careful planning,

investigation of the existing system and its constraints on

implementation, designing of methods to achieve changeover

and evaluation of changeover methods.

MODULES:

1. Detecting The Polymorphic Attacks In The

Network

2. Ipaddress Blocking

3. Resources Settings to Be Monitored For DDOS

Attack

4. Monitor And Prevent The Ddos

5. Request Log And Captcha Form

6. Check For Web Referal Architecture Based

Navigation

1. DETECTING THE POLYMORPHIC ATTACKS IN

THE NETWORK

In this module, the proposed attack strategy, namely

Slowly-Increasing-Polymorphic DDoS Attack Strategy

(SIPDAS) is applied. It leverages known application

vulnerabilities, in order to degrade the service provided by the

target application server running in the cloud.

The term polymorphic is inspired to polymorphic

attacks which change message sequence at every successive

infection in order to evade signature detection mechanisms. The

attack is performed until it is either detected.

ALGORITHM : CORE ALGORITHM OF SIPDAS

AGENT

Require: Integer timeWindow (T {Burst period.}

Require: Integer nT (0 {Nested tags within each

message.}

Require: Integer tagThresold (NT {Nested tags

threshold.}

Require: Integer rateThreshold (DT {Attack rate

threshold.}

Require: Integer attackIncrement (DI {Attack intensity

increment.}

Require: Integer CR (I0 {Initial attack intensity.}

 repeat

t (0;

while t T do

nT (pickRandomTagsðtagThresoldÞ;

tI (computeInterarrivalTimeðCR; nTÞ;

sendMessageðnT ; tIÞ;

 t (t þ tI;

 end while

 if !ðattackSuccessfulÞ then

CR (iCR) attackIncrement); {Attack intensification}

 else

while !ðattack detectedÞ and attackSuccessful do

{Service degradation achieved; attack intensity is fixed}

 nT (pickRandomTagsðtagThresoldÞ;

 tI (computeInterarrivalTimeðCR; nTÞ;

 sendMessageðnT ; tIÞ;

 end while

 end if

 tI MðCRÞ ¼ computeInterarrivalTimeðCR; NTÞ;

 tI mðCRÞ ¼ computeInterarrivalTimeðCR; 1Þ;

 until ð2=tIM tImÞ < rateThresholdÞ and !ðattack detectedÞ

 if attack detected then

{Notify to the Master that the attack has been detected}

 print 0Attack detected0;

 else

{Notify to the Master the attack has reached the threshold dT

and archived the intensity CR ¼ CRM }

print 0Threshold reached0;

{Continue the attack by using the previous CR value}

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

54

 CR ¼ CR attackIncrement;

 loop

 nT (pickRandomTagsðtagThresoldÞ;

 tI (computeInterarrivalTimeðCR; nTÞ;

 sendMessageðnT ; tIÞ;

 end loop

 end if

2. IPADDRESS BLOCKING

In this module, the clients IPAddress details to be

blocked are added in back end table. Any IPAddress can be

added or removed at any time. During addition, listening this

address for all page requests or particular page request is

selected. If particular page, then page URL is given. The

minimum number of request count and time is entered so that

only after that limit is reached, the request is redirected.

IPClassifier classifies all inbound packets into three

categories: packets addressing the website‘s privilege port

which are dropped, TCP packets which are forwarded to

IPVerifier, and other packets, such as UDP and ICMP, which

are forwarded to the normal forwarding path.

3. RESOURCES SETTINGS TO BE MONITORED FOR

DDOS ATTACK

In this module, the source web pages such as html or

aspx page are entered. In addition, image files such as jpg or gif

files path is entered so that they can be listened for

attacks.Therefore, supposing that mRð#kÞ and sRð#kÞ are the

mean and standard deviation of the response time tR for the

messages type #k, empirically estimated during the training

phase, the Meter can adopt the following Chebyshev‘s

inequality to compute deviation of the service time tSð‘iÞ

during the attack:

4. MONITOR AND PREVENT THE DDOS

In this module, the global.asax (Active Server

Application) page is written with attack listening coding. The

requested client URL‘s IPAddress is checked whether it is

blocked. If that particular client is requesting more than given

specified times with in given time period.

In this module, attack prevention coding is written

such that requested client URL‘s IPAddress is checked whether

it is blocked. If that particular client is requesting more than

given specified times with in given time period then it is

redirected to accessdenied.aspx page.

5. REQUEST LOG AND CAPTCHA FORM

In this module, the requests made by clients are saved

for future analysis. The records are displayed using GridView

control which is bind through DataAdapter. In this module,

a web page is designed with CAPTCHA form, in which, the

mathematical equation is randomly generated and after solving

the equation, the required web page is navigated.

IPVerifier verifies every TCP packet‘s capability

token embedded in the last octet of the destination IP address

and the 2-octet destination port number. Verification of a

packet invokes the MAC over a 5-byte input and a 64-bit secret

key. The packets carrying correct capability tokens are sent to

IPRewrite, which sets a packet‘s destination IP to that of the

target website and destination port to port. WRAPS overcome

the drawbacks through checking the HTTP_REFERER

property in Request. If the value is null, it is clear that the page

is requested programmatically by an application.

6. CHECK FOR WEB REFERAL ARCHITECTURE

BASED NAVIGATION

In this module, a web request is checked such that the

router application receives the request, process the query string

information, the ip address parsing work done and the request is

authenticated.

VI-CONCLUSION

In this project, it proposed an effective and efficient

IP traceback scheme against DDoS attacks based on entropy

variations. It is a fundamentally different traceback mechanism

from the currently adopted packet marking strategies. Many of

the available work on IP traceback depend on packet marking,

either probabilistic packet marking or deterministic packet

marking. Because of the vulnerability of the Internet, the packet

marking mechanism suffers a number of serious drawbacks:

lack of scalability; vulnerability to packet pollution from

hackers and extraordinary challenge on storage space at victims

or intermediate routers.

On the other hand, the proposed method needs no

marking on packets, and therefore, avoids the inherent

shortcomings of packet marking mechanisms. It employs the

features that are out of the control of hackers to conduct IP

traceback. It observes and store short-term information of flow

entropy variations at routers. Once a DDoS attack has been

identified by the victim via detection algorithms, the victim

then initiates the pushback tracing procedure.

 International Journal On Engineering Technology and Sciences – IJETS™
ISSN(P): 2349-3968, ISSN (O): 2349-3976

Volume III, Issue V, May- 2016

55

REFERENCES

[1] F. Cheng and C. Meinel, ―Intrusion Detection in the

Cloud,‖ in Proc. IEEE Int. Conf. Dependable,

Autonom. Secure Comput., Dec. 2009, pp. 729–734

[2] M. Armbrust, A. Fox, R. Griffith, et al.: Above the

Clouds: A Berkley View of Cloud Computing,

Website: http://radlab.cd.berkley.edu/, UC Berkley

Reliable Adaptive Distributed Systems Laboratory

(Feb. 2009)

[3] Google App Engine, Website:

http://code.google.com/appengine/, Google (accessed

on Oct 2009)

[4] Windows Azure Platform, Website:

http://www.microsoft.com/azure/, Microsoft

Corporation (accessed on Oct 2009)

[5] Amazon Elastic Compute Cloud (Amazon EC2)

Website: http://aws.amazon.com/ec2/, Amazon

(accessed on Oct 2009)

[6] Laureano, M., Maziero, C., Jamhour, E.: Protecting

host-based intrusion detectors through virtual

machines Computer Networks: The International

Journal of Computer and Telecommunications

Networking, vol.51, Issue 5, pp. 1275-1283 (April

2007)

[7] F-Secure Linux Security, Website: http://www.f-

secure.com/linuxweblog/, F-Secure Corporation

(accessed Oct 2009)

[8] Samhain IDS, Website: http://www.la-

samhna.de/samhain/ (accessed Oct 2009)

[9] Snort IDS, Website: http://www.snort.org/ (accessed

Oct 2009)

[10] Prelude IDS, Website: http://www.prelude-ids.com/,

PreludeIDS Technologies (accessed Oct 2009)

